CSCI 5573: Advanced Operating Systems
Fall 2022

Instructor
- Name: Shivakant Mishra
- Office: ECCR 1B22
- Office Hours: tbd
- Phone: (303) 492-4686
- Email: mishras@colorado.edu

Short Description
This is a graduate course in operating systems intended to create a foundation for operating systems research or advanced professional practice. Topics include Linux kernel programming, virtualization, light-weight virtualization and OS for small devices.

Prerequisite
- CSCI 3753 and CSCI 4593 or equivalent undergraduate course work in operating systems and computer architecture. These are reasonably firm prerequisites. If you have not taken these courses, you should discuss your situation with me before you enroll in CSCI 5573.

Reading Material
Selected articles and other materials from the Internet.

Class webpage
See the course page on Canvas

Grading *(Weights assigned are tentative)*
- Homework and programming assignments: 50%
- Course project: 20%
- Quizzes and Exams: 30%

Policies
Coming up soon
CSCI 5573: Advanced Operating Systems
Fall 2022
Course Content

• Introduction: Review of fundamental concepts
 Processor mode, system calls
 Context switch: schedule() and switch_to() functions
 Virtual memory layout
 Symbol table: System.map file
 System Boot

• Linux Internals
 /proc directory
 printk(), dmsg, klogd, kernel oops and panic
 Loadable Kernel Modules: hello world, device drivers
 Kernel probes: kprobes, jprobes, kretprobes
 System call interception and manipulation
 Linux hotplugging
 USB Subsystem; USB device drivers
 Interrupt handlers – Short IRQ, Long IRQ, softirqs, tasklets
 Work queues
 Keyboard interrupt handler
 Scheduling tasks in kernel

• Virtualization
 Virtual Machine Monitors
 Machine Virtualization
 Challenges with Virtualization
 Full Virtualization: Binary Translation, Shadow Page Tables
 Paravirtualization: Hypercalls
 Hardware Assisted Virtualization – VT-x, VMX
 Xen, VMWare, Denali, Terra

• Lightweight virtualization
 chroot, cgroups, namespaces
 Containers: LXC, Dockers

• Edge computing
 Micro-service based architecture
 EdgeX, Kura
 Serverless computing

• Library OS
 Microkernels vs Exokernels
 Aegis, EXOS, SPIN

• OS for small devices
 Android OS

• Current research topics

Note: The course content will be updated over the semester based on class discussions and student interests.